Адаптация ребенка к школе

Адаптация ребенка к школе

В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...

Адаптация ребенка к школе

Игры в педагогическом процессе

Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.

Адаптация ребенка к школе

Предмет и функции педагогики

Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.

Алгебраические числа

Страница 7

Следующий результат совсем не очевиден, его доказательство принадлежит великому математику 20 века Гёделю и основано на идее нумерации.

Множество конечных последовательностей рациональных чисел счетно.

Доказательство. Пусть N какой-нибудь пересчет рациональных чисел. Найдем по формуле номер конечной последовательности рациональных чисел

,

где pn – простое число с номером n, т.е. p1 = 2, p2 = 3, p3 = 5, … Поскольку каждое натуральное число однозначно разлагается на простые множители, то по номеруоднозначно восстанавливаются номера N(x1), N(x2), …, N(xn), а по каждому из них и рациональные числа x1, x2, …, xn. ÿ

Для нас центральным в этом пункте является следующая

Теорема 3. Множество алгебраических чисел счетно.

Доказательство. Каждый многочлен полностью задается своими коэффициентами, значит, многочлен с рациональными коэффициентами полностью определяется конечной последовательностью рациональных чисел. Следовательно, по теореме 2 таких многочленов счетное число. Каждый из многочленов имеет конечное число корней, значит, алгебраических чисел заданной степени счетное число. Множество алгебраических чисел представляют собой объединение указанных множеств, значит, по теореме 1 это множество счетно. ÿ

30. Число точек на отрезке [0;1].

Теорема Кантора. Точек на отрезке [0;1] несчетное множество.

Доказательство. Применим так называемый процесс Кантора. Предположим от противного, что точек на отрезке [0;1] счетное число, значит, их можно выписать в последовательность a1, a2, a3, … Запишем каждое из чисел в виде бесконечной десятичной дроби:

a1 = 0, a11 a12 a13 …,

a2 = 0, a21 a22 a23 …,

a3 = 0, a31 a32 a33 …, и т.д.

Построим число, лежащее на отрезке [0;1] и отличное от перечисленных. Для этого положим b = 0, b1b2 … bn …, считая, что все цифры, входящие в запись числа b отличны от 0 и 9, а также цифра b1 отлична от цифры a11, цифра b2 отлична от цифры a22, …, цифра bn отлична от цифры ann, и т.д. Если b оказалось бы равным некоторому числу an, то были бы равны цифры bn и ann, что противоречит определению числа b. ÿ

Теперь мы можем дать ответ на сформулированный в начале пункта вопрос: каких чисел больше алгебраических или неалгебраических? Больше чисел неалгебраических, чем алгебраических, поскольку первое множество несчетно, а второе счетно.

У приведенной теоремы Кантора есть один «серьезный недостаток», она не позволяет указать хотя бы одно неалгебраическое число.

Впервые о существовании трансцендентных чисел заявил Лиувилль в 1844 году, заметив, что иррациональные алгебраические числа не допускают «очень сильных» приближений рациональными числами. Эрмит в 1873 году доказал трансцендентность числа e, а трансцендентность числа p доказал Линдеман в 1882 году. Следует отметить особо, что с помощью этого факта была решена проблема, стоявшая почти 20 веков – задача о квадратуре круга: можно ли с помощью циркуля и линейки построить квадрат равновеликий кругу радиуса 1?

На языке алгебраических чисел задачу о квадратуре круга можно переформулировать так: можно ли число p записать в виде алгебраического выражения, содержащего рациональные числа, знаки арифметических действий и знак квадратного корня (знаки действий и корня могут использоваться любое конечное число раз).

Страницы: 2 3 4 5 6 7 8

Нюансы образования:

Возможности преодоления отставания в обучении учащихся в условиях совместной работы практического психолога, педагогов, родителей и обучаемых
Для всех неуспевающих школьников характерна, прежде всего, слабая самоорганизация в процессе учения: отсутствие сформированных способов и приемов учебной работы, наличие устойчивого неправильного под ...

Методологические основы проектирования образовательных технологий
Для нас по данному вопросу наиболее интересными являются результаты методологических разработок Зинченко А. Зинченко А. выделял три типа учебного плана: организационную форму, где в пространстве и вр ...

Категории
Copyright © 2020 - All Rights Reserved - www.firsteducation.ru