Адаптация ребенка к школе

Адаптация ребенка к школе

В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...

Адаптация ребенка к школе

Игры в педагогическом процессе

Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.

Адаптация ребенка к школе

Предмет и функции педагогики

Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.

Развивающее обучение решению математических задач

Страница 1

На современном этапе образования под развивающим обучением понимается обучение младших школьников общим приемам умственной деятельности, а на уроках математики – общим приемам по усвоению математических понятий (наблюдению, анализу, сравнению, заключению по аналогии, абстрагированию, синтезу, обобщению, дедуктивному, индуктивному умозаключению, классификации и др.)

Мы рассмотрим некоторые методические вопросы обучения детей общим приемам решения любых математических задач. Эти приемы учебной деятельности можно представить в виде схемы:

Схема. "Приемы учебной деятельности "

рис.1

В настоящее время далеко не каждого ребенка удается научить решать математические задачи. Основная причина заключается в том, что младшие школьники, прочитав задачу, не анализируют ее, а сразу приступают к решению, не обосновывая выбор арифметического знака действия.

Как научить ребенка сначала приступать к анализу задачи, составлению плана решения и только потом к ее решению.

Сначала следует научить ребенка читать задачу, понимать смысл прочитанного, пересказывать содержание, подмечать, какие события произошли в задаче: что было, что изменилось, что стало; объяснить, что обозначает каждое число в задаче, в чем суть тех или других математических выражений. В этом плане интересен опыт польской школы, в котором значительное учебное время отводится на рассмотрение так называемых "задач без вопросов". При таком методическом подходе дети приобретают первые навыки анализа условия задачи на основе событий, происходящих в задаче. Далее дети учатся правильно ставить вопрос к условию задачи (или составлять по вопросу условие задачи), выделять в задаче условие и ее вопрос. Нетрудно заметить, что на этом этапе начинается обучение детей составлению, сочинению, придумыванию задач, что может стать основным методическим приемом в практической учителя.

Путь к осознанному решению задач лежит главным образом через составление их детьми. Опытные учителя начальной школы делают это по картинкам; числовым данным; вопросу; дополнению задач не достающими данными или вопросом; решению или ответу; схеме, чертежу, краткой записи; плану решения; формулам; данным, взятым из справочников, таблиц и т. д.

Такая творческая работа приводит к составлению сборников задач, придуманных учениками класса.

Обучение анализу задачи на этом не заканчивается, а исследование ее продолжается при иллюстрации задачи рисунками, схемами, чертежами, при записывание краткого условия задачи.

В этом случае учебные действия согласно теории поэтапного формирования (А. Н. Леонтьева, П. Я. Гальперина) осуществляются при работе с материальными или материализованными объектами и проговариваются вслух (громкое проговаривание) с постепенным переходом к умственной форме действий (проговаривание про себя – в "уме").

Обратимся снова к нашей схеме исследования задачи – к выбору способа решения задачи. К сожалению, в начальной школе в настоящее время практически отсутствует на уроках математики алгебраический и геометрический способы решения задачи, а преобладает в основном арифметический, да и только в виде решения задач по действиям. Поэтому дети весьма ограничены в плане выбора способа решения – они решают задачи по действиям или составляют математическое выражение, хотя в программе по математике и есть решение простейших уравнений, но это проходит пропедевтической нитью через решение задач за все годы начального обучения математике. У многих младших школьников так и не сформировано представление о том, что задачи могут решаться алгебраическим или геометрическим способами. Отсюда напрашивается вывод о возвращении к методическим идеям шестидесятых годов, когда в учебниках математики довольно в полном объеме были реализованы вопросы алгебраической и геометрической пропедевтики. Наверное, уже в 1 классе целесообразно при решение задач на нахождение неизвестного слагаемого показать детям на уровне первичных преставлений, что данную задачу можно решить и с помощью уравнения, не вводя, естественно, это умение в ранг обязательных требований.

Страницы: 1 2 3 4 5

Нюансы образования:

Математическая экскурсия и ее структура
В непосредственном учебном процессе экскурсия представляет собой один из методов наглядного обучения. Она является одной из форм внеклассной работы по математике. Математические экскурсии проводятся ...

Оценка внутренних возможностей содержания школьного курса физики с целью формирования познавательных интересов школьников
Опыт показывает, что не любое содержание указанных в программе разделов привлекает интерес учащихся. Тщательное изучение их ответов и методический анализ различных разделов школьного курса физики поз ...

Категории
Copyright © 2019 - All Rights Reserved - www.firsteducation.ru