В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...
Игры в педагогическом процессе
Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.
Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.
Итак, при определенных значениях коэффициентов A, B, C, D уравнения , получаются уравнения следующих поверхностей вращения второго порядка:
- уравнение эллипсоида вращения,
- уравнение сферы,
- уравнение цилиндрической поверхности вращения,
- уравнение однополостного гиперболоида вращения,
- уравнение двуполостного гиперболоида вращения,
- уравнение конической поверхности вращения.
Исследуем одно из уравнений II
Пусть , A>0, B>0, C>0, тогда уравнение
будет иметь следующий вид:
, разделим это уравнение на
получим уравнение:
. Заменим:
на
,
на
, получим уравнение следующего вида:
- это уравнение эллиптического параболоида. Полученное уравнение может быть уравнением поверхности вращения второго порядка при выполнении следующего условия: при
, тогда получим следующее уравнение:
, при сечении данной поверхности второго порядка плоскостями параллельными координатной плоскости XOY получим окружности.
Итак, при определенных значениях коэффициентов A, B, C, D уравнения , получаются уравнения следующих поверхностей вращения второго порядка:
- уравнение эллиптического параболоида вращения.
Исследуем уравнения III:
Уравнения представленные под цифрой IV не могут являться уравнениями поверхности вращения второго порядка, так как ни при каких значениях они не могут описывать поверхность вращения. В их параллельных сечениях не может получиться окружности, это связано с тем, что в данных уравнениях не хватает квадрата хотя бы ещё у одной переменной.
Роль воспитателя в организации двигательной активности детей
на физкультурном занятии
Д.В. Хухлаева подчеркивает, что «значение занятий заключается в систематическом осуществлении взаимосвязанных оздоровительных, образовательных и воспитательных задач, выполнение которых обеспечивает ...
Создание развивающей среды в изостудии и в интерьере детского сада
Обучение детей на занятиях по изодеятельности и формирование творческих способностей прямым образом зависит от ситуации развивающей среды в изостудии и в самом детском учреждении. В нашей изостудии « ...