В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...
Игры в педагогическом процессе
Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.
Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.
Мы приведем примерное содержание данного раздела. По желанию учителя материал может быть дополнен и скорректирован. В дальнейшем по ходу изложения основного содержания также будут приведены исторические комментарии, отсутствующие в данном разделе. Заметим, что используемый материал взят из книг по истории математики, содержащихся в библиографии.
Центральным математическим понятием является число. Отметим сразу, что многочлены, поля, множества, функции тесно связаны с понятием числа. Впрочем, последнее замечание относится практически к любому математическому понятию. Для нас точкой отсчета является 1600 г. Наступление 16 в. в Западной Европе ознаменовалось важными достижениями в алгебре и арифметике. Были введены в обращение десятичные дроби и правила арифметических действий с ними. Настоящим триумфом стало изобретение в 1614 логарифмов Дж. Непером. С начала 16 в. более широко стали употребляться иррациональные числа. Б.Паскаль (1623–1662) и И. Барроу (1630–1677), учитель Ньютона в Кембриджском университете, утверждали, что такое число, как , можно трактовать лишь как геометрическую величину. Однако в те же годы Р. Декарт (1596–1650) и Дж.Валлис (1616–1703) считали, что иррациональные числа допустимы и сами по себе, без ссылок на геометрию. В это время продолжались споры по поводу законности введения отрицательных чисел. Еще менее приемлемыми считались возникавшие при решении квадратных уравнений комплексные числа, такие как
, названные Декартом «мнимыми». Эти числа были под подозрением даже в 18 в., хотя великий российский математик (швейцарец по происхождению) Л.Эйлер (1707–1783) с успехом пользовался ими.
Достижения в алгебре.
Решение задач, сводящихся к частным видам уравнений 2-ой и 3-ей степени, можно найти еще в древнем Вавилоне (2000 лет до н.э.). Первое изложение теории решения квадратных уравнений дано в книге Диофанта «Арифметика» (3 в. н.э.). В 16 в. итальянские математики Н. Тарталья (1499–1577), С. Дель Ферро (1465–1526), Л. Феррари (1522–1565) и Дж. Кардано (1501–1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, были введены символы: +, –, ×, ¤, , =, < и другие. Самым существенным новшеством стало систематическое использование французским математиком Ф. Виетом (1540–1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней.
Великий английский физик и математик И.Ньютон (1643–1727) открыл соотношение между корнями и дискриминантом [b2 – 4ac] квадратного уравнения, а именно, что уравнение ax2 + bx + c = 0 имеет равные действительные, разные действительные или комплексно сопряженные корни в зависимости оттого, будет ли дискриминант b2 – 4ac равен нулю, больше или меньше нуля. В 1799 великий немецкий математик К.Гаусс (1777–1855) доказал так называемую основную теорему алгебры: каждый многочлен n-й степени с комплексными коэффициентами имеет ровно n комплексных корней.
В течение почти 300 лет после открытия способов решения уравнений степени 3 и 4 делались безуспешные попытки решить в радикалах уравнения степени 5 и выше с буквенными коэффициентами. Такие попытки предпринимал великий немецкий математик Г. Лейбниц, но «бог распорядился иначе». Только в 1826 г. норвежский математик Н. Абель (1802–1829) доказал, что невозможно получить общее решение уравнения степени выше 4 с помощью конечного числа указанных операций. Это, правда, не исключало, что корни каждого конкретного уравнения с числовыми (а не буквенными) коэффициентами могут быть выражены в радикалах. Тем более, что существует много уравнений специального вида степени выше 4, допускающих такое решение.
Накануне своей гибели на дуэли французский математик Э. Галуа (1811–1832) дал решающий ответ на вопрос о том, какие уравнения разрешимы в радикалах. В теории Галуа использовались перестановки корней и было введено понятие группы, которое нашло широкое применение во многих областях математики. Примером уравнения неразрешимого в радикалах является уравнение x5 – 25x – 5 = 0. Нельзя не отметить теоретико-групповые и теоретико-полевые идеи и результаты великого французского математика Ж. Лагранжа (1736-1813), приблизившие решение проблемы разрешимости уравнений в радикалах. Кстати, весьма близок к решению проблемы был и Абель, которого сразила смерть в 1829 году, когда он интенсивно занимался этой проблемой и сообщил Лежандру свои результаты, уж очень близкие к результатам Галуа. Дальнейшее развитие возникших идей привело к созданию теорий групп, колец и полей – важнейших направлений современной алгебры.
Заметим, что разрешимость уравнений в радикалах тесно связана с вопросом о геометрических построениях с помощью циркуля и линейки, в частности, задача о построении правильного n-угольника. Эта задача в полном объеме была решена Гауссом, при этом потребовалось изучить корни n-ой степени из единицы в поле комплексных чисел.
Игра
как форма организации урока
Обучающие игры занимают важное место среди современных психолого-педагогических технологий обучения. Как метод они получили распространение в 70-е годы ХХ века. В настоящее время в зависимости от сфе ...
Общая структура системы образования РФ
Согласно Закону Российской Федерации «Об образовании», Российское образование представляет собой непрерывную систему последовательных уровней, на каждом из которых функционируют государственные, него ...