В настоящее время около 30-40% детей испытывают трудности при обучении в школе. Наиболее остро этот вопрос встает на начальных этапах школьного обучения...
Игры в педагогическом процессе
Тема игры в педагогическом процессе очень актуальна, игра – мощнейшая сфера «самостоятельности» человека: самовыражения, самоопределения.
Свое название педагогика получила от греческого слова "пайдагогос" (пайд — дитя, гогос — веду), которое означает детоводство или дитяведение.
Чем же отличаются методики обучения решения задач, которые в той или иной форме находят отражение в практике начального обучения математике?
Для ответа на этот вопрос рассмотрим сначала особенности традиционной методики обучения младших школьников решению задач. Воспользуемся конкретным примером. Учитель читает текст задачи: "Коля нашел 5 грибов, а Миша — 3.Сколько грибов они нашли вместе?"
После чтения задача наглядно интерпретируется. Для этого деятельность школьников направляется заданиями учителя:
— Поставьте на наборное полотно столько кружков, сколько грибов нашел Коля. (Учащиеся выставляют 5 кружков.)
— Теперь поставьте на наборное полотно столько кружков, сколько грибов нашел Миша. (Ученики выставляют 3 кружка.)
— Сколько грибов они нашли вместе?
Ответ на этот вопрос обычно не вызывает у детей затруднений, так как все грибы находятся на наборном полотне, и они могут их пересчитать.
Теперь важно выяснить, каким способом получен ответ "8 грибов". Для этого учитель обращается к детям с вопросом
"Как решали задачу?" Предполагая получить ответ: "Я к пяти прибавил 3, получил 8", он недоумевает, когда некоторые дети не могут ответить на этот вопрос или отвечают так: "Я посчитал".
— В чем же причина? — думает учитель. — Ведь ученики видели, что сначала выставили 5 грибов, затем добавили 3, значит, они должны ответить на вопрос так: "К пяти прибавить З". Но здесь действует психологическая закономерность, которая заключается в тенденции сохранять известные способы действий в знакомой ситуации (в данном случае речь идет о присчитывании или пересчитывания). Выставленные на наборном полотне предметы создают все условия для обращения к известному детям способу действия. Так как все грибы находятся перед глазами детей, то у них, естественно, не возникает необходимости прибегнуть к сложению чисел пяти и трех. Учитель использует различные приемы, с помощью которых он пытается разъяснить детям то, что от них требуется. В одном случае это показ образца. Это нужно делать так. В другом случае наводящий вопрос: "Числа нужно складывать или вычитать?" Описанная ситуация характеризует определенный подход к методике работы над задачей, при котором формирование у учащихся умения решать простые задачи есть одновременно и формирование представлений о смысле тех арифметических действий, которые они используют для решения задачи. В такой ситуации ученику достаточно трудно осознать необходимость выбора арифметического действия и запись решения задачи представляет для него формальную операцию. Так же формально осуществляется работа, связанная с усвоением структуры задачи. Особенно нелепо она выглядит в том случае, когда учитель, пользуясь предметной наглядностью, пытается разъяснить детям, что в задаче известно, а что неизвестно.
Таким образом, в данной методике обучения решению задач можно обнаружить, по крайней мере, два противоречия. Первое из них, связанное с функцией задач как средства формирования у учащихся математических представлений, заключается в том, что, с одной стороны, решение задачи должно сводиться к выбору арифметического действия (запись выражения), выполнение которого (вычисление значения выражения) позволяет ответить на вопрос, поставленный в задаче. С другой стороны, представления детей о смысле арифметических действий формируются в процессе решения простых задач. Суть противоречия сводится к тому, что дети должны выбирать арифметические действия, не имея представлений о том, что это такое, а опираясь только на житейский опыт. Снять это противоречие можно только через показ образца решения каждого типа задачи и последующим его закреплении.
Второе противоречие заключается в том, что, с одной стороны, детей знакомят со структурой задачи (условие, вопрос, известные, неизвестное), а с другой — для формирования умения анализировать задачу с точки зрения ее структуры используются однообразные текстовые конструкции. Которые всегда начинаются с условия, содержащего данные, или известные, затем всегда следует вопрос и то, о чем спрашивается в вопросе, — это неизвестное. В связи с этим у учащихся не только не формируется умение анализировать текст задачи, но и не возникает даже потребности в этом. В результате, используя для решения простой задачи житейские представления и ориентируясь на слова-действия: подарили — взяли, было — осталось, пришли — ушли и т.д., большинство учащихся "узнают" задачу и вспоминают каким действием она решается. Такая, например, простая задача, как: "С аэродрома утром улетело 7 самолетов, а вечером улетело еще 3 самолета. Сколько всего самолетов улетело с аэродрома?" — относится при такой методике обучения к задаче повышенной трудности, так как, ориентируясь на слово улетело, учащиеся могут выполнить действие вычитание.
Принципы психологической теории деятельности
Психологи утверждают, что прочное усвоение знаний происходит только через собственную деятельность по познанию предмета. Исследованием взаимосвязи действия и сознания российская психология активно на ...
Распространённые типы мужского поведения мальчиков
От класса к классу мальчики приобретают опыт подчинения взрослой женщине, что по-нашему мнению, привело к появлению нескольких специфичных типов мужского поведения. Самый распространенный тип мы назв ...